

AIRS RTA
L. Strow

Version 5 RTA Upgrades

L. Larrabee Strow, Scott Hannon, Sergio DeSouza-Machado and Howard Motteler

Atmospheric Spectroscopy Laboratory (ASL)
Physics Department
and the
Joint Center for Earth Systems Technology

University of Maryland Baltimore County (UMBC)

March 29, 2007

Overview

- Reflected thermal
- Non-LTE
- Minor gas variability added
- Transmittance adjustments

V5 RTA: Main Improvements

AIRS RTA L. Strow

- Non-LTE (with Lopez-Puertas, Funke, Edwards)
- Reflected thermal
- New transmittance adjustments (with Maddy and Barnet)
- More minor gases can be varied
- M12 (649-682 cm⁻¹) channel centers fixed

Note: 0.2K tough (2% absolute accuracy) with fundamental lab spectroscopy!

Improvements to Reflected Thermal

AIRS RTA L. Strow

 Reflected thermal more realistic, downward radiation computed similarly to upward.

Channel Center Wavenumbers

AIRS RTA

 \bullet Module-12 ((649-682 cm $^{-1}$) center wavenumbers shifted by $\sim\!1.5\%$ of a SRF FWHM.

Minor Gases

AIRS RTA L. Strow

- CO₂ can now be adjusted on all 100 layers, previously limited to a single scale factor for the whole profile
- N₂O, SO₂, and HNO₃ profiles can now be varied.

Global Bias in Non-LTE Channels

Revised Optical Depth Tuning

AIRS RTA L. Strow

- Lack of truth in the stratosphere (Use GPS in future?)
- Retrieve (w/ V4-RTA) strat profiles for RS-90 val data.
- ullet Replace ECMWF with these retrievals above ${\sim}60$ mbar.
- Re-derive transmittance tuning (with TWP-1) for channels that span the 60 mbar switchover.
- Channels above 60 mbar remain unvalidated, channels that span 60 mbar remain partially unvalidated/uncorrected.
- NOAA-CMDL MBL (Marine Boundary Layer) used for CO₂.
- Test RTA with TWP-2, TWP-3, Minnett, ABOVE, etc.
- Minor changes to H₂O and CH₄ lines in 1320 cm⁻¹ region (due to HNO₃).
- Very minor change to window H_2O continuum (again, due to HNO_3)
- New O₃ transmittances from HITRAN2004 included via transmittance adjustments.

Sample Transmittance Adjustments

ASL Fixed Gases: V4 - V5

"Water Lines" (CH4 pblms): V4 - V5

Water Continuum: V4 - V5

ASL Ozone: V4 - V5

V5 - V4 Regression Profile Δ B(T)s

Polar Cases: V5 - V4: emis = 0.975

Polar Cases: V5 - V4: emis = 1; N2O is AFGL Polar

Polar Cases: SARTA - kCARTA Reflected thermal, RTA fit errors, N2O, ..?

V5 versus V4 Bias, Ocean, Night RS-90's

V5 versus V4 Bias, Ocean, Day RS-90's

Biases, All 5 ARM-TWP Phases, Night

Biases, All 5 ARM-TWP Phases, Day

Conclusions

AIRS RTA L. Strow

- Need to reconsider all transmittance adjustment
 - Up to V5 of ARM Obs: only used V1-V3 so far
 - Look at operational sondes?
 - Intercompare AIRS with IASI with regard to RTA issues (use ECMWF for intercomparisons for now)
 - Need to be sure stratospheric "truth" well understood
 - Fix ozone via HITRAN instead of multipliers
- Non-LTE; examine over wide range of conditions
- Variable N2O, HNO3 in polar regions where need to test RTA parameterization and reflected thermal carefully
- Cloud/Aerosols?

ECMWF T(z),Q(z) Changes

